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Abstract 

 

The effect of dispersion on acoustic wave sensors is considered. The discussion is focused upon layer 

guided surface acoustic waves (Love waves), which obtain their high mass sensitivity for the first 

Love wave mode by optimising the guiding layer thickness, d, such that d∼λl/4; the wavelength in the 

layer is given by λl=f/vl where f is the operating frequency and vl is the shear acoustic speed of the 

guiding layer. We show that this optimisation of guiding layer thickness corresponds to strong 

dispersion so that the phase and group velocities can be quite different. From the definition of the 

phase velocity mass sensitivity we show that it can be determined from either the slope of the curve of 

phase velocity with normalized guiding layer thickness, z=d/λl, or from the phase and group velocities 

measured for a given guiding layer thickness. Experimental data for a poly (methyl methacrylate) 

(PMMA) polymer guiding layer on 36o XY Lithium Tantalate is presented. Measurements of phase 

velocity and group velocity determined by a network analyzer were obtained for systematically 

increasing guiding layer thicknesses; a pulse transit experiment was also used to provide independent 

confirmation of the group velocity data. Two independent estimates of the mass sensitivity are 

obtained for z=d/λl<0.22 from i) the slope of the phase velocity curve and ii) the measurements of the 

group and phase velocity. These two estimates are shown to be consistent and we therefore conclude 

that it is possible to determine the mass sensitivity for a Love wave device with a given guiding layer 

thickness from measurements of the phase and group velocities. Moreover, we argue that the formula 

using group velocity to determine phase velocity mass sensitivity can be extended to a wide range of 

other acoustic wave sensors. In addition, we suggest that variations in the group velocity due to 

deposited mass may be a more sensitive parameter than variations in the phase velocity. 

 

Keywords Love wave, acoustic plate mode (APM), mass sensitivity, sensors, acoustic waves. 
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I Introduction 

 Acoustic wave sensors are being increasingly investigated for their potential in gas and 

liquid phase sensor applications1-4. Amongst the most mass sensitive of these sensors are 

acoustic waves utilising some form of guiding. These include Love wave and surface 

transverse wave (STW) devices which combine a shear horizontally polarised surface acoustic 

wave (SAW) delay line with either a guiding layer5,6 or a surface grating structure, 

respectively, to slow down the wave and further confine it to the surface7. This type of 

acoustic wave mode necessarily involves a system with dispersion so that the phase velocity 

is not equal to the group velocity. Whilst some recognition of the difference between group 

and phase velocity exists in the literature on acoustic plate mode sensors8-10, relatively little 

discussion of this has occurred in the literature on Love wave sensors11,12. The main effect 

that has been accounted for is the inclusion of a factor, which is the ratio of the group to phase 

velocity, in the formula ∆f/f= (vg/v)(∆v/v) relating the fractional frequency shift to the 

fractional change in phase speed due to mass deposition. However, this does not represent a 

detailed consideration of the effect of dispersion on acoustic wave sensors and how it 

influences the mass sensitivity. Moreover, there are recent reports in the literature of the use 

of pulse transit type experiments13-14 and it is therefore timely to seek a better understanding 

of the effects of dispersion. 

 

In this paper we discuss the relationship between the phase velocity and the group 

velocity and the mass sensitivity of acoustic wave sensors that use acoustic modes with 

dispersion. To show a specific application of the concepts being developed, we focus the 

discussion upon Love wave type sensors, but we emphasise that the concepts themselves are 

valid for other types of acoustic wave sensors showing strong dispersion. In the theoretical 

part of the paper we illustrate the angular frequency-wave vector dispersion curve for the first 

three Love wave modes and from this compare the group and phase velocities for Love 

waves. A relationship between the phase velocity mass sensitivity and the slope of the 

dispersion curve is then used to derive a simple formula relating measurements of group and 

phase velocity to the phase velocity mass sensitivity. The utility of such a formula is that it 

enables the mass sensitivity of a device to be assessed experimentally without the need to 

deposit additional material. We also argue that the formula can be extended to other types of 

acoustic wave sensors. In addition, we suggest that the group velocity may be a more 

sensitive parameter indicating deposited mass than the phase velocity. In the second part of 

the paper, we present experimental results for the change of the phase velocity of the first 
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Love wave mode on LiTaO3 with the change in thickness of a PMMA guiding layer. We then 

determine the phase velocity mass sensitivity at a range of guiding layer thicknesses from the 

variation of the phase velocity with guiding layer thickness. We also use direct measurements 

of the group velocity, measured using two independent experimental configurations, and the 

phase velocity to provide a second, complementary, estimate of the phase velocity mass 

sensitivity. The comparison of the two methods of obtaining the mass sensitivity suggests that 

measurements of group and phase velocity provide a simple method of estimating the phase 

velocity mass sensitivity of a device. Finally, we show that the change in group velocity with 

deposited mass is a highly sensitive parameter that may have potential in sensors. 

 

II Theoretical Discussion 

a) Phase and Group Velocity 

In a Love wave, the higher mass sensitivity can be understood as a consequence of the 

change of the phase speed, v, as a function of the normalised guiding layer thickness, z=d/λl 

where d is the guiding layer thickness and λl is the characteristic shear acoustic wavelength of 

the guiding layer at the operating frequency, f  (i.e. λl=vl/f where vl is the shear acoustic speed 

of the layer)15,16. For small guiding layer thicknesses the speed of the first Love wave is close 

to the shear acoustic speed of the substrate, vs, whilst for large z the speed becomes close to 

that of the shear acoustic speed of the guiding layer, vl. The solid curves in figure 1 shows a 

calculation of the Love wave phase speed, v, for the first three Love wave modes supported 

by an infinitely thick isotropic substrate coated with a waveguide layer. The substrate shear 

speed and densities are vs=4160 ms-1 and ρs =7456 kg m-3 and the layer shear speed and 

densities are vl=1100 ms-1 and ρl =1000 kg m-3. In a Love wave sensor, the transition of the 

Love wave speed between the two limiting cases of vs and vl is rapid with guiding layer 

thickness, so that operating the Love wave device at the point of steepest change in the phase 

speed gives high mass sensitivity (see z∼0.25 for the first Love wave mode in fig. 1). 

Depositing a thin mass layer appears similar to increasing the guiding layer thickness and so 

causes large changes in the phase speed from that at the operating point.  However, this type 

of relationship between phase speed and normalised guiding layer thickness means that the 

system can have strong dispersion so that the phase and group velocities will not always be 

the same. The phase velocity, v, is defined using the frequency and wavelength as v=fλ, or 

equivalently as v=ω/k when using the angular frequency ω=2πf and wavevector k=2π/λ. The 
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group velocity, vg=dω/dk, is the slope of the (ω, k) dispersion curve. This dispersion has a 

significant effect when pulses are used rather than a continuous wave with a single frequency. 

 

Physically, the phase velocity is the speed at which a particular sinusoidal wave 

travels. When a pulse is made by combining a number of sinusoidal waves each wave will 

travel with its own phase speed. In the dispersionless case, these phase speeds are all constant, 

independent of frequency, and the pulse therefore travels at a constant speed without altering 

its shape; this is the case for the Love wave when z is either small or large. However, when 

dispersion occurs the pulse will travel at a characteristic speed of its own and the pulse will 

spread out as it travels; this is the case for the Love wave when z is intermediate in value and 

this corresponds to the operating region giving maximum phase sensitivity. The group 

velocity is the velocity at which the energy in the pulse is transmitted. For a given guiding 

layer thickness, the frequency components in a pulse each have a slightly different value of z 

and this gives rise to different phase speeds. These speeds do not have a significant effect on a 

pulse unless the slope of the phase speed curve with z is large, but for a Love wave sensor this 

itself is the requirement for high mass sensitivity. The fact that a pulse possesses a small 

range of frequencies and each frequency component therefore sees a slightly different 

effective thickness z=df/vl of guiding layer means the pulse effectively samples the local slope 

of the curve of phase speed with z.  Since this slope determines the mass sensitivity, it is 

possible to anticipate that mass sensitivity could be probed by measurements of the group 

velocity. 

b) Dispersion Curve 

Considering the solid curves in fig. 1 it is apparent that the group and phase velocities 

of the first Love wave mode are identical for both small z and large z because changing the 

value of z by altering the frequency does not cause large changes in the phase velocity. For 

low z the phase and group velocities will both be close to the substrate shear speed, vs, whilst 

for large z the phase and group velocities will both be close to the guiding layer shear speed, 

vl. The  (ω, k) dispersion curve can be calculated from the (v, z) curve using ω=2πzvl/d and 

k=ω/v = 2πzvl/(vd) provided the ratio vl/d of the layer shear speed to the layer thickness is 

known. The dotted curves in fig. 1 giving the group velocities are calculated for a specific 

layer speed of vl = 1100 ms-1 and so the ratio vl/d corresponds to a specific choice of the layer 

thickness, d. Figure 2 shows the (ω, k) dispersion curve calculated from the solid curves fig. 1 

using d=0.25 µm, so that vl/d=4.4×109 s-1. The solid curves show the first three Love wave 
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modes and the upper dotted line corresponds to the substrate phase speed of 4160 ms-1 and the 

lower dotted line corresponds to the layer speed of 1100 ms-1. As anticipated from the form of 

fig. 1, the (ω, k) dispersion curve for the first Love wave mode (curve a in fig. 2) initially 

follows the relationship for a constant group speed equal to that of the substrate phase speed 

before deviating and joining the lower dotted line representing a constant group speed equal 

to that of the substrate phase speed. This pattern is repeated for the second (curve b in fig. 2) 

and third (curve c in fig. 2) Love wave modes, although a threshold frequency exists before 

each mode comes into existence. The slopes of the (ω, k) dispersion curves in fig. 2 give the 

group velocities at any operating point. Fig. 2 therefore shows that the group velocity for each 

of the Love wave modes goes through a minima at an intermediate value of z. The group 

velocities calculated from the slopes in fig. 2 are shown as the dotted curves in fig. 1. The 

group velocity is always less than the phase velocity and we therefore have a system with 

normal dispersion. 

c) Mass Sensitivity 

An important factor in evaluating the potential usefulness of an acoustic wave sensor 

is the mass sensitivity, Sm, defined by the change in phase speed at fixed frequency17, 

 






 ∆
∆

=
→∆

o
m

m v

v

m
S

1
lim

0
 (1) 

where ∆m is the deposited mass per unit area, vo is the phase speed at the device operating 

frequency fo; the mass sensitivity function is in units of m2 kg-1. For non-layer guided acoustic 

plate mode (APM) devices, several authors have used the equivalent definition, 

 






=
dm

dv

v
S

o
m

1
 (2) 

where m is the mass per unit area on the APM device surface. Schumacher et al commented 

that the mass sensitivity for an APM device, defined using frequency changes rather than 

phase speed changes, could be obtained by determining the slope of the curve at zero 

thickness18. The relationship between the mass sensitivity and the slope of the phase speed 

with normalised mass layer thickness is evident from Eq. (2) by changing variables using 

m=ρld=ρlvlz/f so that Eq. (2) becomes, 
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In the Love wave case, the deposited mass is in addition to the existing guiding layer and it is 

not immediately obvious that Eq. (3) continues to be valid. However, we have previously 

considered the problem of adding a perturbing mass layer to a Love wave device and shown 

that for a Love wave, Sm can be re-written in terms of the slope of the phase speed curve in 

fig. 1 as16, 
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where vp is the shear acoustic speed of the perturbing mass layer, ρl is the density of the 

guiding layer and fo is the operating frequency at the operating point zo. The sensitivity 

formula, Eq. (4), for the Love wave device differs from the non-layer guided formula, Eq. (3), 

only by a pre-factor involving the shear acoustic speeds of the guiding layer and the 

perturbing mass layer. This pre-factor is equal to unity when sensing a material with the same 

shear acoustic speed as the guiding layer and is approximately unity if both the layer and 

perturbing mass shear acoustic speeds are significantly less than the Love wave speed. 

 

Figure 1 suggests that when the device operating point, zo, is at the maximum 

sensitivity, the group and phase velocity will be significantly different. This implies that 

measurements of group and phase velocity may be used to deduce the mass sensitivity of a 

Love wave device. To consolidate this idea, we re-consider the definition of the group 

velocity and write it in terms of the z-parameter assuming a constant guiding layer thickness, 

d. The inverse group velocity is vg
-1=dk/dω and since k=ω/v we find, 
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Using the approximation that vp≈vl, we can then replace the term in the slope of logev in Eq 

(4) by the mass sensitivity function, Sm, and obtain, 
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Since the sensitivity function, Sm, for the Love wave is negative, Eq. (7) predicts that the 

group velocity will always be less than the phase velocity. This equation can also be re-
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arranged to give the mass sensitivity as a function of the phase and group velocities and the 

guiding layer thickness and density, 
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Thus, the mass sensitivity can be expressed as a fractional deviation of the phase velocity 

from the group velocity divided by the mass per unit area due to the guiding layer. Figure 3 

shows the modulus of the mass sensitivity evaluated using Eq. (8) and the data for the three 

Love wave modes in fig. 1; a frequency of 100 MHz has been used in the calculation of fig. 3.  

 

From an experimental perspective, Eq. (8) is particularly important because it predicts 

that we should be able to evaluate the mass sensitivity of a Love wave device by making 

measurements of the group and phase velocities. We also believe that Eq. (8) can be applied 

to any non-layer guided acoustic wave sensor, including acoustic plate mode, surface 

transverse wave, shear horizontal surface acoustic wave and Rayleigh-SAW devices, simply 

by taking ∆m=ρld to be the deposited mass per unit area and examining the limit ∆m→0. 

Whilst Eq. (8) has been written as an approximate equality, for a non-Love wave sensor 

satisfying the mass sensitivity formula of Eq. (3), rather than Eq. (4), the equality will be 

exact. 

 

An additional observation on the mass sensitivity is that the slope of the group 

velocity curve in fig. 1 appears steeper than that of the phase speed. By analogy to the Eq. (3) 

and Eq. (4), which use the differential of logev with respect to the mass of the guiding layer, 

we can introduce a definition of the mass sensitivity based on the group velocity, 
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From comparing the curves in fig. 1, we note that this group velocity mass sensitivity, Sm
g, 

may be larger than the mass sensitivity, Sm, defined using the phase velocity. For the data in 

fig. 1, the peak in the group velocity mass sensitivity will also be sharp and will then reduce 

to zero as the group velocity goes through its minimum. Subsequent to this minimum, the 

group velocity mass sensitivity will change sign as the group velocity approaches the value of 

the acoustic shear speed of the layer. At the present time, it is not clear whether this group 

velocity mass sensitivity will be of value experimentally because the relative accuracy with 
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which measurements of group and phase velocity can be made in Love wave sensors has not 

been widely investigated.  

 

The definition of group velocity mass sensitivity used in Eq. (9) is similar, to within 

an overall negative sign, to the definition of phase velocity mass sensitivity given by Teston et 

al, in their work on the mass sensitivity of acoustic plate modes10. They also note that a 

frequency mass sensitivity, Sm
f, can be defined in a similar manner to Eq. (3) and that it is 

related to the phase velocity mass sensitivity by Sm
f= Smvg/v. This relationship has also 

previously been quoted by a number of authors in relation to work on acoustic plate mode 

sensors. Applying this formula to Eq. (8) gives, 
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Thus, the frequency mass sensitivity differs from the phase velocity mass sensitivity by 

whether the difference between group and phase velocities is expressed as a fraction with 

respect to the phase or group velocity. Since the phase velocity is always larger than the group 

velocity, Sm
f will be smaller than Sm, possibly by an order of magnitude depending upon the 

operating point. To illustrate this point, fig. 4 shows the ratio of group to phase velocity 

calculated for the data in fig. 1. This difference between the types of mass sensitivity needs to 

be emphasised, because there is no difference between phase and frequency based mass 

sensitivity for a QCM when operated with no coating layer. Therefore any relative 

comparison of a QCM to a Love wave device will depend on whether phase velocity or 

frequency based mass sensitivity is used. 

 

III Comparison to Experiment 

The Love wave system was created using a polymer guiding layer (PMMA from Aldrich) 

spin coated at 6000 rpm across a surface acoustic wave (SAW) delay line device fabricated on 

36o XY LiTaO3. The propagation direction was along the crystalline X-axis, which supports 

both a surface skimming bulk wave (SSBW) and a shear horizontal-SAW with speeds both 

approximately equal to 4160 ms-1. The polymer guiding layer covered the whole device, 

including the interdigital transducers (IDTs), and converts the acoustic modes into a Love 

wave. The IDT’s consisted of a double-double split finger type design with a wavelength of 

λIDT=45 µm. Each metal finger in the IDT was of width 6.75 µm and each space between the 

fingers was 4.5 µm; the double-double design minimises triple transit interference. The 
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uncoated SAW device had a resonant frequency of 92.64 MHz. Each IDT was of length 

40λIDT with an aperture of 65λIDT and the separation between IDTs provided a centre-to-

centre propagation path of 9.011 mm. To obtain a range of guiding layer thicknesses, the 

polymer was successively spin coated across the whole device and then the device hardbaked 

at 200 oC for 45 min. After each spin-coating step, the frequency spectrum of the device was 

measured and the resonant frequency and the corresponding group time delay recorded using 

a network analyzer (Agilent 8712ET). The phase velocity was deduced from the frequency 

change at minimum insertion loss and the group velocity from the group time delay at the 

frequency corresponding to minimum insertion loss; the error on the group velocity 

measurement was around ±10%. To provide an independent measurement of the group 

velocity, a separate pulse mode system was also used to measure the transit time of a short 

(100 ns) pulse of rf at the same resonant frequency and group velocities were subsequently 

calculated. The pulse mode system used for these experiments has already been described in 

detail in a previous report13. The results showed that group velocities calculated from the two 

methods agreed to within 5%. 

 

The points in fig. 5 show the measured phase and group velocities (upper and lower 

points, respectively) plotted as a function of z=d/λl where λl=vl/f. The dotted curves are fits of 

Love wave theory to the data points, based upon an elastic mass guiding layer using ρl=2600 

kgm-3 and vl=1100 ms-1. The value of ρl used in fitting the Love wave theory to the data is 

significantly different to the measured value of ρl=1100 kgm-3 and is needed to provide a less 

sharp and more rounded curve through the data points in the region d/λl∼0.2. We also 

performed experiments using Love waves generated from an SSBW mode on ST-Quartz and 

again needed to use an effective guiding layer density to accurately fit the data in the region 

d/λl∼0.2. The reasons for the need for an effective layer density are not obvious, but two 

possible candidates are the use of the SSBW mode to generate the Love wave and the use of a 

viscoelastic polymer guiding layer rather than an elastic solid. In either case, the precise 

fitting parameters used do not influence the comparison between the two methods of 

determining the experimental values of mass sensitivity, which is the purpose of these 

experiments. The layer shear speed used in fitting the data is consistent with values known for 

PMMA and is consistent with data for higher order Love wave modes19. 
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To obtain two estimates of mass sensitivity, Sm
a

 and Sm
b, from the experimental data we 

use Eq. (4) and Eq. (8), respectively. Re-writing Eq. (4) using x for the guiding layer 

thickness and using vp=vl gives, 
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The data for the phase speed was used to obtain simple estimates of the slope of logev, using 

the difference between one value and the next and, hence Sm
a, at the experimental thicknesses. 

The second estimate of sensitivity, Sm
b, was obtained using Eq. (8). These two estimates are 

plotted against normalized thickness in fig. 6; |Sm
a|  is indicated by triangles and |Sm

b|  by 

diamonds. It is notable that the absolute value for sensitivity is highly sensitive to changes in 

the estimate of the layer thickness, d.  An error in calibration of the guiding layer thickness 

can have a significant effect on the absolute value of the sensitivity, whilst not altering the 

overall shape of the curve. Whilst Eq. (11) has only one explicit factor of d, it should be noted 

that the phase speed is also dependent on d through the combination of df/vl and this increases 

the significance of any error in d.  To further compare the two methods of estimating mass 

sensitivity, fig. 7 plots |Sm
a| against |Sm

b|. Although there is a slight offset of –2.6 on the 

intercept, the slope on this graph is 1.06 close to unity indicating the two methods are 

consistent. If Sm
a is calculated from the experimental data using backward differences of the 

slope of logev, slightly different values of slope and intercept occur, but the slope remains 

close to unity. 

 

Figures 1 indicates that the change in group velocity with guiding layer thickness is 

more rapid than that of the phase velocity. The experimental data in fig. 5 confirm this for the 

all values of z at which direct comparisons can be made. The slope of the phase velocity curve 

at the two highest values of z may be less accurate because this corresponds to a large 

insertion loss. The data therefore confirms the idea that the group velocity is a sensitive 

parameter to mass deposition. Re-writing Eq. (9) in a form similar to Eq. (11) gives, 
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and Sm
g can be evaluated from the experimental data in a manner similar to the calculation of 

Sm
a. In Fig. 8, both forward and backward differences have been averaged to provide the data 

points. The group velocity based mass sensitivity provides a significant enhancement over the 

phase velocity mass sensitivity at low to moderate guiding layer thicknesses, although further 
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work is needed to determine the relative accuracy with which the two types of mass 

sensitivity can be determined. In this work, we have used a network analyzer to determine 

phase and group velocity, with a separate pulse mode system to confirm the group velocity 

measurements. However, practical sensors are often based on simple circuits implementing 

the measurement of phase velocity via phase shifts typically using a mixing between a 

detected signal and a reference continuous wave. This type of phase measurement achieves a 

significant accuracy because the measurement is resolved to within a few percent of the 

wavelength; achieving the same accuracy with a group velocity based sensor system is more 

difficult. However, the significant enhancement achievable via the group velocity over the 

phase velocity mass sensitivity at low to moderate guiding layer thicknesses (for a given Love 

wave mode) may prove equally important as this is the range of guiding layer thickness to 

which the sensor is likely to be limited for the first Love wave mode given the high insertion 

loss with large polymer thickness. 

 

IV Conclusion 

It has been shown that dispersion in acoustic wave sensors is an intrinsic and important 

property when they are used for mass sensing. This dispersion is particularly strong in Love 

wave devices and is strongly related to the high mass sensitivity that these sensors possess. A 

formula relating the difference in group and phase velocities to the mass sensitivity has been 

derived and this formula is applicable to both Love wave and other acoustic wave sensors. 

The applicability of this formula has been confirmed experimentally using a Love wave 

device consisting of a polymer on an 36o XY Lithium Tantalate substrate operated at a 

frequency around 93 MHz. It has also been suggested that the group velocity may be a good 

sensor parameter. 
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Figures 

 

Figure 1 Calculated Love wave (first, second and third modes) phase speed curves (solid 

lines) for an infinitely thick substrate with shear speed and density of vs=4160 m s-

1 and ρs =7456 kg m-3 covered by a guiding layer with shear speed and densities 

of vl=1100 m s-1 and ρl =1000 kg m-3. The dotted curves shows the corresponding 

group speeds calculated using a 0.25 µm thick guiding layer. 
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Figure 2 Dispersion curves deduced from the Love mode phase speed curves in figure 1 

using a 0.25 µm thickness guiding layer; a) first mode, b) second mode and c) 

third mode. The upper dotted line corresponds to the substrate shear speed of 4160 

ms-1 and the lower dotted line corresponds to the layer shear speed of 1100 ms-1. 
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Figure 3 Magnitude of mass sensitivity, |Sm|, evaluated from the group and phase 

velocities for the data in figure 1 using a frequency of 100 MHz. 
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Figure 4 The ratio of group to phase velocities evaluated for the data in figure 1. 
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Figure 5 Experimental data for variation of Love wave phase and group velocity with 

increasing guiding layer thickness (upper and lower data, respectively). The 

dotted curves are fits from Love wave theory. 
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Figure 6 Mass sensitivity with increasing guiding layer thickness: |Sm
a| (triangles) by using 

phase velocity and Eq. (4), |Sm
b| (diamonds) by using phase and group velocities 

and Eq. (8). 
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Figure 7 Comparison of the two methods of measuring mass sensitivity; solid line is a best 

fit with a slope of 1.06. 
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Figure 8 Sensitivity defined using the slope of the group velocity (Eq. (12)). 
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